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Abstract: There is a need for selecting good combinations of laboratory tests for various medical decision situations. 
Multivariate statistical methods are better tools for this type of selection than multiple univariate comparisons of 
candidate tests. Linear discriminant analysis is a suitable method. The best selection strategies are stepwise selection and 
evaluation of all possible subsets. Guiding criteria in the selection process may be measures of statistical separation 
between the clinical groups or empirical probabilities of correct reallocation. The latter criterion has the advantage that 
an optimum subset size may be identified. 
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Introduction 

Laboratory tests play a major role in medical 
decisions concerning clinical diagnosis and 
follow-up, evaluation of biochemical and 
physiological functions, estimation of prog- 
nosis, and selection of treatment. The problem 
is to select the most suitable laboratory test or 
panel of tests from the vast repertoire of a 
modern laboratory. The aim of this paper is to 
review guidelines for the use of statistical 
methods for the identification of optimum 
combinations of laboratory tests. 

Laboratory tests may be included in pack- 
ages (1) because they provide indispensable 
data for the interpretation of biochemical or 
physiological states or (2) because they con- 
tribute to reliable allocation of patients in 
clinical categories. The following consider- 
ations concern the second of these two prob- 
lem domains. 

Examples will be drawn from the author’s 
previous studies on optimum combinations of 
laboratory tests for thyroid and liver disorders 
[l]. A more comprehensive review of the 
theory and use of multivariate statistical 
methods, focusing on discriminant analysis, 
has been published [2]. 

Clinical Data 

To identify an optimum combination of 

laboratory tests for a specified type of medical 
decision, one needs at least a training data set 
to use for the selection of the test panel. In 
addition, it is often necessary to have an 
evaluation data set for the performance testing 
of the selected test combination since the use 
of the training data for this purpose may result 
in a too optimistic picture of the efficiency. 

The training data set 
This should consist of a sufficient number of 

individuals correctly classified into two or more 
relevant clinical groups, e.g. a group of healthy 
controls and one or several groups of patients 
having the diseases under study. A set of 
candidate laboratory tests should be performed 
on each of these persons. To avoid circular 
reasoning, the results of the laboratory test to 
be evaluated should preferably not be used for 
the initial categorization of the individuals. 

The evaluation data set 
This may contain the same type of data, i.e. 

other individuals belonging to the same clinical 
categories with results of the laboratory tests 
selected during the training phase of the study. 
It is, however, an advantage to include other 
clinical groups as well in the evaluation data 
set. The benefits of this extension are caused 
by two factors. (1) Allocation rules are usually 
only valid for clinical groups that match those 
included in the training data set. It is therefore 
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of interest to test the performance of these 
rules on individuals belonging to related or 
similar clinical groups. (2) The training data set 
often represents an ideal situation with indi- 
viduals without disturbing conditions. There- 
fore, a more realistic picture of the real-life 
performance is obtained by including “diag- 
nostic noise”, i.e. individuals that have other 
diseases or conditions in addition to those 
studied [3]. 

The Insufficiency of the Multiple Univariate 
Approach 

Given a suitable training data set, it might be 
tempting to identify a panel of laboratory tests 
on the basis of their ability distinguish between 
clinical classes when evaluated separately, as 
has often been done in the past. This is the 
multiple univariate approach. There are many 
possible criteria for univariate ranking of the 

laboratory tests [l], for example, Student’s t 
test (two clinical groups), F-ratio (analysis of 
variance, two or several groups), or corre- 
lations between the test results and a property 
variable (with a different value assigned to 
each clinical group). The correlation method is 
a natural choice if the property variable is of an 
ordinal nature as is the case when the clinical 
groups belong to a functional scale, e.g. 1 = 
hypothyroid, 2 = euthyroid, and 3 = thyro- 
toxic. 

An example from the Oslo Liver Study [4] 
may show the inappropriateness of the 
multiple univariate approach. When Student’s 
t test was used for ranking laboratory tests to 
distinguish between chronic active hepatitis 
and primary biliary cirrhosis, the following 
four serum and plasma tests gave the highest t- 
values: Ceruloplasmin (t = 6.5), Normotest (a 
coagulation parameter, t = 6.2), phospho- 
lipids (t = 4.8), and alkaline phosphatase (t = 
4.3). All these tests were, however, inter- 
correlated (0.52 < r < 0.81). In fact, all four 
tests are measures of biliary obstruction (at 
least partially). 

The Student’s t test example shows the main 
problem with the multiple univariate 
approach. It cannot exclude inclusion of 
laboratory tests that carry essentially the same 
type of information, i.e. it selects redundant 
tests. This statement probably holds true for 
any multiple univariate method, as was con- 
firmed in a study where several univariate 
criteria were tested [l]. 

The Multivariate Approach 

It is more appropriate to identify the best 

laboratory test panels by multivariate methods 
that disentangle the intercorrelations between 
the variables. By this approach the tests are 
allowed to carry only the discriminatory in- 
formation that is unique to each of them. 

Furthermore, multivariate allocation rules 

are more efficient than decisions based on 
single test results evaluated separately. In the 
liver disease study referred to above [4], a 
linear discriminant function based on the four 
best laboratory tests (ceruloplasmin, IgA, 
haptoglobin and ALAT), identified as de- 
scribed below, correctly reallocated 93% of the 
patients with chronic active hepatitis and pri- 
mary biliary cirrhosis, while each test alone 
only succeeded in 4-27% of the cases. 

The cause of this phenomenon is that con- 
sidering each observation (the set of an indi- 
vidual’s laboratory results) as a point in multi- 
dimensional space increases diagnostic sensi- 
tivity and specificity because the observations 
for different clinical groups tend to cluster in 
different regions of this space. Figure 1 shows 
an example with two tests and two groups. The 
ellipses represents the projections of two bi- 
variate distributions on a plane through both 
axes. The univariate distributions for the two 
groups (see the projections on planes along 
each of the two axes) overlap considerably, in 
contrast to the projections on the ideal plane 
along the line B-B. 

Linear discriminant analysis is, in fact, a 
multivariate statistical method that identifies 
the optimum separating planes through the 
multidimensional space. In the bivariate 
example shown in Fig. 1, a single plane is 
located along the line A-A. In other words, 
the two bivariate distributions are transformed 
to the two univariate distributions shown on 
the plane along the perpendicular line B-B. 
With more than two groups, a corresponding 
number of discriminant functions establish a 
set of separating planes. 

Multivariate Methods 

Classical linear discriminant analysis (the 
Fisher’s type) [2] is only one of several multi- 
variate methods that can be applied for ident- 
ifying optimum combinations of laboratory 
tests [l]. 

There is no simple answer to the question of 
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Figure 1 
The separation of two bivariate distributions (ellipses) and 
their projections on planes along the variable axes and 
along line B-B. From H.E. Solberg, &and. J. Clin. Lab. 
Invest. 35, 705-712 (1975), with the editor’s permission. 

which method should be chosen when several 
are available. The choice depends partially on 
the data structure. Most multivariate methods, 
in particular those belonging to the class of 
parametric methods, make assumptions con- 
cerning distribution types and, in many cases, 
presuppose equality of the variance-covari- 
ante matrices in the groups. The availability of 
computer programs that support variable selec- 
tion may also determine the choice. 

An incomplete list of alternative methods 

follows. 
(1) Quadratic discriminant analysis, which 

caters for differences in the variance-covari- 
ante matrices [2]. 

(2) Other variants of discriminant analysis, 
including non-parametric types, which may be 
more appropriate when the underlying data do 
not conform to multivariate Gaussian distri- 
butions [l-3]. 

(3) Pattern recognition methods that are 
based on partial or total disentangling of the 
intercorrelation between the variables [l, 31. 
The SIMCA-method may also be placed in this 
category. 

(4) Multiple linear regression, particularly 
when the clinical groups belong to an ordinal 
scale, e.g. functional classes like 1 = “low”, 
2 = “normal”, and 3 = “high”. 

The author has tested and applied several 
methods [l], many of which produced accept- 
able results, although the classical linear discri- 
minant analysis was preferred for most studies. 
This method presupposes multivariate Gaus- 
sian distributions with equal variance-covari- 
ante matrices. This assumption is often not 

fulfilled with medical data. The method seems, 
however, to be reasonably robust against 
violations of the theoretical assumptions [2]. 
The remainder of this paper discusses the use 
of linear discriminant analysis for the selection 
of optimum combinations of laboratory tests 
although many topics are relevant for other 
methods as well. 

Selection of Tests by Discriminant Analysis 

In addition to the possible effects of violated 
assumptions, the following topics must be 
considered when using linear discriminant 
analysis for the identification of an optimum 
subset of laboratory tests for a specified clinical 
purpose: (1) selection strategy; (2) selection 
criterion; (3) subset size; and (4) final 
evaluation. 

Selection strategy 
Most computer programs for linear discrimi- 

nant analysis offer several methods for variable 
selection (in our case: selection of laboratory 
tests) [2]. By forward selection one identifies 
the best single variable and then adds at each 
stage the variable, among the remaining can- 
didates, which adds most discriminating power 
in combination with those already included. By 
backwards elimination the process starts with 
the whole set of candidate variables followed 
by sequential elimination of the variables that 
contributes least to the discrimination. Both of 
these methods have drawbacks [2] that makes 
stepwise selection a better alternative. The 
latter method combines the two best features 
of the other two. It is a modified forward 
selection strategy: variables that become 
redundant as new variables are added to the 
subset are expelled (they are allowed to re- 
enter at later stages). This method usually 
selects an acceptable combination of labora- 
tory tests although it may in some cases not 
identify the absolutely best subset. Another 
drawback: this strategy only identifies one 
subset among all the subsets that might be 
almost as good as the one selected. The user is, 
accordingly, not given any possibility to 
choose, such as is provided when testing all 
possible subsets (of all sizes or of a specified 
size). Then a ranked list of, say, the top ten 
best combinations can be produced. This 
method may, however, be prohibitive in terms 
of computing time. For example, the number 
of possible subsets of size four among 28 
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candidate variables is 20,475! But it is possible 
to reduce the search space by applying a 
branch and bound algorithm [2]. 

Selection criterion 
When searching for good subsets, one needs 

a selection criterion [2]. Two classes of criteria 
exist. Most computer programs for variable 
selection by discriminant analysis apply 
measures of statistical separation between 
groups such as F-ratio or Mahalanobis’ squared 
distance (or its multi-group analogue). There 
is, however, often no constant relation be- 
tween statistical separation of groups and the 
empirical probability of correct allocation. 
Therefore, some programs are based on the 
frequency of correct reallocation of the cases in 
the training data set for each of the variable 
subsets evaluated. The best estimate of re- 
allocation probability seems to be obtained by 
the iterative leave-one-out or split-sample 
techniques [2]. 

Subset size 
One also needs a stopping rule to identify a 

variable subset of optimum size. Computer 
programs that employ separation statistics as 
criteria for the stepwise method (see above), 
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Figure 2 
Stepwise selection by linear discriminant analysis of 
laboratory tests for the separation between thyrotoxicosis 
and euthyroidism. Filled circles: Mahalanobis’ squared 
distance; open circles: total reallocation error (%); 
squares: reallocation error of euthyroid cases; triangles: 
reallocation error of thyrotoxic cases. From K. Rootwelt 
and H.E. Solberg, &and. .I. Clin. Lab. Invest. 38,477-485 
(1978), with the editor’s permission. 
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usually stop the process when the increase in 
separation is below a threshold value. This 
method, however, often includes more vari- 
ables in the subset than desirable. Figure 2 
gives an example. As can be seen, the mini- 
mum reallocation error is obtained with a 
subset of three laboratory tests, but the statisti- 
cal separation continues to rise as more vari- 
ables are included. This phenomenon is a good 
argument in favour of using reallocation rates 
as the guiding criterion in the selection process 
(see above). In this case the optimum size is 
accordingly three. More tests only cause 
redundancy. 

Final evaluation 
The final evaluation of identified good sub- 

sets of laboratory tests has two aspects. First, a 
laboratory investigator might, for reasons of 
economy or the information content of the 
tests in addition to that conveying separation, 
wish not to select the absolutely best test 
combination identified. Therefore a ranked list 
of good test subsets is valuable. Second, as 
mentioned above, one usually needs an evalu- 
ation data set to test the real-life performance 
of the laboratory test panel. 

Final Remark 

The statistical methods for variable selection 

used for the identification of good laboratory 
test combinations for clinical purposes may 
also provide algorithms for computer-aided 
medical decision. The methods are, however, 
valuable tools even though such decision 
support is not used in clinical practice. 
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